pFUSE-SEAP-rFc

Plasmid designed for the expression of a SEAP-Fc Fusion protein
Catalog \# pfuse-rsp
For research use only
Version 20K04-MM

PRODUCT INFORMATION

Content:

$-20 \mu \mathrm{~g}$ of pFUSE-SEAP-rFc plasmid provided as lyophilized DNA

- 1 ml of Zeocin ${ }^{\text {TM }}(100 \mathrm{mg} / \mathrm{ml})$

Storage and Stability:

- Product is shipped at room temperature.
- Lyophilized DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable 3 months.
- Resuspended DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable up to 1 year.
- Store Zeocin ${ }^{\mathrm{TM}}$ at $4^{\circ} \mathrm{C}$ or at $-20^{\circ} \mathrm{C}$. The expiry date is specified on the product label.

Quality control:

- Plasmid construct has been confirmed by restriction analysis and sequencing.
- Plasmid DNA was purified by ion exchange chromatography and lyophilized.
- Expression of SEAP-rFc was confirmed by using QUANTI-Blue ${ }^{\mathrm{Tw}}$ Solution
- SEAP-rFc protein was purified using protein G affinity chromatography.

GENERAL PRODUCT USE

pFUSE-SEAP-Fc plasmids express a SEAP-Fc fusion protein generated by fusing the gene encoding for human secreted alkaline phosphatase (SEAP) and the Fc region of an immunoglobulin G (IgG).
pFUSE-SEAP-Fc plasmids yield high levels of Fc-Fusion proteins. The level of expression is usually in the $\mu \mathrm{g} / \mathrm{mL}$ range. They can be transfected in a variety of mammalian cells, including myeloma cell lines, Chinese hamster ovary (CHO) cells, monkey COS cells and human embryonic kidney (HEK)293 cells. These cells are commonly used in protein purification systems.
SEAP-Fc fusion proteins are secreted and can be easily detected in the supernatant of pFUSE-SEAP-Fc-transfected cells by using QUANTI-Blue ${ }^{\text {ru }}$ Solution, a SEAP detection medium. SEAP-Fc fusion proteins can be easily purified by single-step protein A or protein G affinity chromatography.

PLASMID FEATURES

- hEF1-HTLV prom is a composite promoter comprising the Elongation Factor-1 $\alpha(\mathrm{EF}-1 \alpha)$ core promoter ${ }^{1}$ and the R segment and part of the U5 sequence (R-U5') of the Human T-Cell Leukemia Virus (HTLV) Type 1 Long Terminal Repeat ${ }^{2}$. The EF-1 α promoter exhibits a strong activity and yields long lasting expression of a transgene in vivo. The R-U5' has been coupled to the EF-1 α core promoter to enhance stability of RNA.
- SEAP-rFc was generated by fusing the gene encoding for human SEAP with the Fc region of rabbit IgG. This region comprises the CH2 and CH3 domains of the IgG heavy chain and the hinge region. The hinge serves as a flexible spacer between the SEAP and Fc moieties, allowing each part of the molecule to function independently.
- SV40 pAn: The Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA ${ }^{3}$.
- ori: A minimal E. coli origin of replication to limit vector size, but with the same activity as the longer Ori.
- CMV enh / hFerL prom: This composite promoter combines the human cytomegalovirus immediate-early gene 1 enhancer and the core promoter of the human ferritin light chain gene. This ubiquitous promoter drives the expression of the Zeocin ${ }^{\text {T" }}$-resistance gene in mammalian cells.
- EM2KC is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli. EM2KC is located within an intron and is spliced out in mammalian cells.
- Zeo: Resistance to Zeocin ${ }^{\text {Tw }}$ is conferred by the Sh ble gene from Streptoalloteichus hindustanus The same resistance gene confers selection in both mammalian cells and E. coli.
- ßGlo pAn: The human beta-globin 3'UTR and polyadenylation sequence allows efficient arrest of the transgene transcription ${ }^{4}$.

1. Kim DW et al. 1990. Use of the human elongation factor 1 alpha promoter as a versatile and efficient expression system. 91(2):217-23.
2. Takebe Y. et al. 1988. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 8(1):466-72. 3. Carswell S. \& Alwine JC. 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol. 9(10):4248-58.
3. Yu J. \& Russell JE. 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human beta-globin mRNA. Mol Cell Biol. 21(17):5879-88.

METHODS

Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the
DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile $\mathrm{H}_{2} \mathrm{O}$. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT116 or in other commonly used laboratory E. coli strains, such as DH5 α.

Zeocin ${ }^{\text {TM }}$ usage

This antibiotic can be used for E. coli at $25 \mu \mathrm{~g} / \mathrm{ml}$ in liquid or solid media and at $50-200 \mu \mathrm{~g} / \mathrm{ml}$ to select Zeocin ${ }^{\text {TM }}$-resistant mammalian cells.

RELATED PRODUCTS

Catalog Code

Agar Protein G/ Agarose
gel-agg-2
rep-qbs

NotI (-1)
1 GCGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTGTGAATCGTAACTAACATACGCTCTCCATCAAAACAAAACGAAACA
PvuI (172)
SgfI (171)
101 AAACAAACTAGCAAAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACATTTCTCTATCGAAGGATCTGCGATCGCTCCGGTGCCCGTCAGTGGGCA
201 GAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACGGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATG
Psp1406I (368)
301 TCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAG

$701 \xrightarrow{\text { GGCGCCTACCTGAGATCACCGGTTCAGCTGAGGAGGCACATCATGATTCTGGGGCCCTGCATGCTGCTGCTGCTGCTGCTGCTGGGCCTGAGGCTACAGC }}$ 1. $M \quad$ I $\quad L \quad G \quad P \quad C \quad M \quad L \quad G \quad L \quad R \quad L \quad Q$

801 TCTCCCTGGGCATCATCCCAGTTGAGGAGGAGAACCCGGACTTCTGGAACCGCGAGGCAGCCGAGGCCCTGGGTGCCGCCAAGAAGCTGCAGCCTGCACA
20. L S L G I I P V BamHI (968)
901 GACAGCCGCCAAGAACCTCATCATCTTCCTGGGCGATGGGATGGGGGTGTCTACGGTGACAGCTGCCAGGATCCTAAAAGGGCAGAAGAAGGACAAACTG 53* T \quad 1. A NdeI (1034) 1001 GGGCCTGAGATACCCCTGGCTATGGACCGCTTCCCATATGTGGCTCTGTCCAAGACATACAATGTAGACAAACATGTGCCAGACAGTGGAGCCACAGCCA
 BstXI (1131) 1101 CGGCCTACCTGTGCGGGGTCAAGGGCAACTTCCAGACCATTGGCTTGAGTGCAGCCGCCCGCTTTAACCAGTGCAACACGACACGCGGCAACGAGGTCAT
 BstEII (1245)
1201 CTCCGTGATGAATCGGGCCAAGAAAGCAGGGAAGTCAGTGGGAGTGGTAACCACCACACGAGTGCAGCACGCCTCGCCAGCCGGCACCTACGCCCACACG
 1301 GTGAACCGCAACTGGTACTCGGACGCCGACGTGCCTGCCTCGGCCCGCCAGGAGGGGTGCCAGGACATCGCTACGCAGCTCATCTCCAACATGGACATTG
 1401 ATGTGATCCTGGGTGGAGGCCGAAAGTACATGTTTCGCATGGGAACCCCAGACCCTGAGTACCCAGATGACTACAGCCAAGGTGGGACCAGGCTGGACGG

```
220.D V I L G G G G R K K Y M M F F R M M G T T P
```

1501 GAAGAATCTGGTGCAGGAATGGCTGGCGAAGCGCCAGGGTGCCCGGTATGTGTGGAACCGCACTGAGCTCATGCAGGCTTCCCTGGACCCGTCTGTGACC
 1601 CATCTCATGGGTCTCTTTGAGCCTGGAGACATGAAATACGAGATCCACCGAGACTCCACACTGGACCCCTCCCTGATGGAGATGACAGAGGCTGCCCTGC

SacII (1719)
PshAI (1756)
1701 GCCTGCTGAGCAGGAACCCCCGCGGCTTCTTCCTCTTCGTGGAGGGTGGTCGCATCGACCACGGTCATCACGAAAGCAGGGCTTACCGGGCACTGACTGA
320. R 1801 GACGATCATGTTCGACGACGCCATTGAGAGGGCGGGCCAGCTCACCAGCGAGGAGGACACGCTGAGCCTCGTCACTGCCGACCACTCCCACGTCTTCTCC
 XcmI (1928)
SacI (1923)
1901 TTCGGAGGCTACCCCCTGCGAGGGAGCTCCATCTTCGGGCTGGCCCCTGGCAAGGCCCGGGACAGGAAGGCCTACACGGTCCTCCTATACGGAAACGGTC
387. $\mathrm{F} \quad \mathrm{G} \quad \mathrm{G} \quad \mathrm{Y}$ 2001 CAGGCTATGTGCTCAAGGACGGCGCCCGGCCGGATGTTACCGAGAGCGAGAGCGGGAGCCCCGAGTATCGGCAGCAGTCAGCAGTGCCCCTGGACGAAGA 420.P G Y V \quad L BssHII (2131)
2101 GACCCACGCAGGCGAGGACGTGGCGGTGTTCGCGCGCGGCCCGCAGGCGCACCTGGTTCACGGCGTGCAGGAGCAGACCTTCATAGCGCACGTCATGGCC

```
453* T H A F G E D V V A V F F A R R G P P Q A H BstXI (2288)
```

2201 TTCGCCGCCTGCCTGGAGCCCTACACCGCCTGCGACCTGGCGCCCCCCGCCGGCACCACCGACGCCGCGCACCCGGGGCGGTCCCGGTCCAAGCGTCTGG

```
487* F A A A Clllllllllllllllllllllllllllllllllllllllll
        BgIII (2302) PmII (2316)
2301 ATAGATCTAGCAAGCCCACGTGCCCACCCCCTGAACTCCTGGGGGGACCGTCTGTCTTCATCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCAC
```



``` 520. D R
```

2400 GCACCCCCGAGGTCACATGCGTGGTGGTGGACGTGAGCCAGGATGACCCCGAGGTGCAGTTCACATGGTACATAAACAACGAGCAGGTGCGCACCGCCCG

 2500 GCCGCCGCTACGGGAGCAGCAGTTCAACAGCACGATCCGCGTGGTCAGCACCCTCCCCATCGCGCACCAGGACTGGCTGAGGGGCAAGGAGTTCAAGTG

 NcoI (2684)
2599 CAAAGTCCACAACAAGGCACTCCCGGCCCCCATCGAGAAAACCATCTCCAAAGCCAGAGGGCAGCCCCTGGAGCCGAAGGTCTACACCATGGGCCCTCCC

2699 CGGGAGGAGCTGAGCAGCAGGTCGGTCAGCCTGACCTGCATGATCAACGGCTTCTACCCTTCCGACATCTCGGTGGAGTGGGAGAAGAACGGGAAGGCAG
131. R E E L S S R S V S L T C M I N G F Y P 653 R E E L S S R S V S L T C M I N G F Y P P S D D I S 2799 AGGACAACTACAAGACCACGCCGGCCGTGCTGGACAGCGACGGCTCCTACTTCCTCTACAGCAAGCTCTCAGTGCCCACGAGTGAGTGGCAGCGGGGCG

 BalI (2986) NheI (2980)
2898 ACGTCTTCACCTGCTCCGTGATGCACGAGGCCTTGCACAACCACTACACGCAGAAGTCCATCTCCCGCTCTCCGGGTAAATGAGCTAGCTGGCCAGACAT 197•D V F T C S V M H E A L H N H Y T Q K S I S R S P G K • 719. D V F T C S V M H E A L H N H Y T \quad Q K S I S R 2998 GATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACC

HpaI (3118)

3098 ATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACC

> AseI (3216)

XmnI (3214)
3198 TCTACAAATGTGGTATGGAATTAATTCTAAAATACAGCATAGCAAAACTTTAACCTCCAAATCAAGCCTCTACTTGAATCCTTTTCTGAGGGATGAATAA
3298 GGCATAGGCATCAGGGGCTGTTGCCAATGTGCATTAGCTGTTTGCAGCCTCACCTTCTTTCATGGAGTTTAAGATATAGTGTATTTTCCCAAGGTTTGAA

> SspI (3457) SwaI (3471)

3398 CTAGCTCTTCATTTCTTTATGTTTTAAATGCACTGACCTCCCACATTCCCTTTTTAGTAAAATATTCAGAAATAATTTAAATACATCATTGCAATGAAAA
3498 TAAATGTTTTTTATTAGGCAGAATCCAGATGCTCAAGGCCCTTCATAATATCCCCCAGTTTAGTAGTTGGACTTAGGGAACAAAGGAACCTTTAATAGAA ApaLI (3656)
359 ATTGGACAGCAAGAAAGCGAGCTTCTAGCTTATCCTCAGTCCTGCTCCTCTGCCACAAAGTGCACGCAGTTGCCGGCCGGGTCGCGCAGGGCGAACTCCC
 3698 GCCCCCACGGCTGCTCGCCGATCTCGGTCATGGCCGGCCCGGAGGCGTCCCGGAAGTTCGTGGACACGACCTCCGACCACTCGGCGTACAGCTCGTCCAG
 SgrAI (3886)
3798 GCCGCGCACCCACACCCAGGCCAGGGTGTTGTCCGGCACCACCTGGTCCTGGACCGCGCTGATGAACAGGGTCACGTCGTCCCGGACCACACCGGCGAAG
 BssHII (3965)
3898 TCGTCCTCCACGAAGTCCCGGGAGAACCCGAGCCGGTCGGTCCAGAACTCGACCGCTCCGGCGACGTCGCGCGCGGTGAGCACCGGAACGGCACTGGTCA
 BalI (4000)
3998 ACTTGGCCATGATGGCTCCTCctgtcaggagaggaaagagaagaaggttagtacaattgCTATAGTGAGTTGTATTATACTATGCAGATATACTATGCC
3* K A M 31 I A G
4097 AATGATTAATTGTCAAACTAGGGCTGCAgggttcatagtgccacttttcctgcactgccccatctcctgcccacccttcccaggcatagacagtcagtg -
HindIII (4227) SacII (4242)

4197 acttacCAAACTCACAGGAGGGAGAAGGCAGAAGCTTGAGACAGACCCGCGGGACCGCCGAACTGCGAGGGGACGTGGCTAGGGCGGCTTCTTTTATGGT
BspEI (4385)
4297 GCGCCGGCCCTCGGAGGCAGGGCGCTCGGGGAGGCCTAGCGGCCAATCTGCGGTGGCAGGAGGCGGGGCCGAAGGCCGTGCCTGACCAATCCGGAGCACA

4397	TAGGAGTCTCAGCCCCCCGCCCCAAAGCAAGGGGAAGTCACGCGCCTGTAGCGCCAGCGTGTTGTGAAATGGGGGCTTGGGGGGGTTGGGGCCCTGACTA
4497	GT CAAAACAAACTCCCATTGACGTCAATGGGGTGGAGACTTGGAAATCCCCGTGAGTCAAACCGCTATCCACGCCCATTGATGTACTGCCAAAACCGCAT
4597	$\begin{gathered} \text { SnaBI (4620) } \\ \text { CATCATGGTAATAGCGATGACTAATACGTAGATGTACTGCCAAGTAGGAAAGTCCCATAAGGTCATGTACTGGGCATAATGCCAGGCGGGCCATTTACCG } \end{gathered}$
4697	NdeI (4725) TCATTGACGTCAATAGGGGGCGTACTTGGCATATGATACACTTGATGTACTGCCAAGTGGGCAGTTTACCGTAAATACTCCACCCATTGACGTCAATGGA
4797	AAGTCCCTATTGGCGTTACTATGGGAACATACGTCATTATTGACGTCAATGGGCGGGGGTCGTTGGGCGGTCAGCCAGGCGGGCCATTTACCGTAAGTTA
4897	```PacI (4911) SdaI (4903) TGTAACGCCTGCAGGTTAATTAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCC```
4997	GCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCT
5097	CGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTAT
5197	ApaLI (5235) CTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGT
5297	CCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTG
5397	GTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGC
5497	AAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGG
5597	PacI (5651) SwaI (5660) GGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGGCTAGTTAATTAACATTTAAATCA

